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Abstract 
NASA spacecraft and robots operate at long distances from 
Earth. Command sequences generated manually, or by 
automated planners on Earth, must eventually be executed 
autonomously on-board the spacecraft or robot. Software 
systems that execute commands on-board are known 
variously as execution systems, virtual machines, or 
sequence engines.  Every robotic system requires some sort 
of execution system, but the level of autonomy and type of 
control they are designed for varies greatly. This paper 
presents a survey of execution systems with a focus on 
systems relevant to NASA missions. 

Introduction   

As NASA’s missions become more complex, autonomy 
becomes increasingly important to the success of those 
missions.  At the heart of such autonomous systems are 
sub-systems, known variously as execution systems, virtual 
machines, or sequence engines, that execute commands and 
monitor the environment.  Such execution systems vary in 
sophistication, from those that execute linear sequences of 
commands at fixed times, to those that can plan and 
schedule in reaction to unexpected changes in the 
environment. 
 
For NASA missions, sophisticated execution systems are 
highly desirable for several reasons.  One is that NASA 
spacecraft and robots typically operate far from Earth, and 
so must take on significant responsibility for their own 
health and safety.  Second, models of robot sensors and 
effectors are often uncertain and the environment is 
                                                 
 

generally only partially known and may even be dynamic. 
To account for uncertainty even a simple deterministic 
sequence of commands needs to use worst-case estimates 
of action duration and resource use. In some cases even this 
suboptimal sequence may not be robust to the uncertainty.  
 
This paper presents a survey of execution systems that have 
been developed for various applications.  We focus on 
those systems that are relevant to NASA-type applications.  
Before presenting the individual systems, we define some 
terms that are critical to understanding execution systems. 
 
An executive is a software component that realizes pre-
planned actions. Executives are particularly useful in the 
presence of uncertainty. Classical executive functions 
include selecting an action from a set of possibilities based 
on the current state of the robot and environment and 
outcome of previous actions, hierarchical task 
decomposition, coordinating simultaneous actions, resource 
management, monitoring of states, resources command 
status, and fault diagnosis and recovery. One way to view 
an executive is as an onboard system that takes a plan that 
assumes a certain level of certainty and expected outcomes 
and executes it in an unknown and possibly dynamic 
environment. 
 

A plan is a series of actions designed to accomplish a set of 
goals but not violate any resource limitations, temporal or 
state constraints, or other spacecraft or rover operation 
rules. Desirable characteristics of a plan are that it be valid, 
complete and optimal (or of high quality). Algorithms that 
can reason about achieving goals over a future time period 
and in the face of various constraints are called planners. 
However, a plan, as generated by most any current planner, 
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still requires the help of an execution system to be useful 
for real-world execution. Making these plans executable 
may not involve complex AI algorithms, but is essential for 
achieving the plan. In order to perform plan execution, 
control structures such as conditional statements that catch 
violated assumptions, looping constructs that can retry an 
action until it succeeds, and more detailed descriptions of 
preconditions that must be checked before an action is 
executed must be added. Execution languages provide 
constructs to represent essential plan execution information 
in addition to the plan. 

 

An execution language is a representation of actions and 
plans that takes into account the state of robot and 
environment at the time the action is executed, and the 
interdependence between actions, in terms of temporal, 
precedence, or other constraints.  
 

Model-based systems are represented by a knowledge-base 
(model) of its structure and behavior and are typically 
specified using a declarative representation.  In other 
words, these models do not specify the sequence of actions 
required to fulfill specific high-level goals of the system, 
but instead they specify the expected effect each action or 
external event may have on the modeled state. Models are 
often specified in a modular manner, where only the local 
effect of an event is described. Planners may use these 
models to find sequences of actions directed toward the 
goal or a fault diagnosis system may use them to detect and 
identify faults. 

 
Some execution systems use no automated planners; we 
call these execution-only systems. Other execution systems 
have explicit interfaces to planners, (through an execution 
language or a standard format like XML), we call these 
execution systems coupled with an external planner. Yet 
another class of execution systems integrate planning and 
execution more tightly by using a planner internally within 
the execution system to select control actions. We call these 
execution systems with internal planner. Note this is not a 
mutually exclusive classification. Some execution system 
may be used as an execution only system with manually 
encoded plan execution, but may also have well defined 
interfaces to one or more automated external planners that 
may be used in other applications. An execution system 
may also provide an external interface to a planner in 
addition to having an internal planner. Finally, note that the 
coupling of execution systems with external planners can 
differ in tightness, ranging from infrequent requests for 
assistance to continuous information sharing.  In cases 
where the coupling is tight, the combined functionality is 
similar to integrated execution-planning systems. 

 

Traditional Command Execution 
 
At this time, most spacecraft and rovers are operated via 
sequences of commands.  The command sequences are 
fairly simple in structure and the interpretation on board the 
spacecraft is straightforward.  Dynamic outcomes and 
environmental uncertainties are handled partially by 
making sequences conformant to possible outcomes, and 
partially by relying on on-board fault detection and system 
health software. 
In this context of traditional spacecraft operations, the 
executive is the flight software system on board the 
spacecraft; more specifically, the sequence execution 
system and the health monitoring and fault detection 
system.  The execution language is simple; an execution 
plan is a fairly small set of branching command sequences 
and sub-sequences, where each command is either executed 
at a specific time, or immediately following the completion 
of another command.  Typically, there are no conditionals, 
no loops, no constraints, etc. 
The most notable properties of this approach are: 

• Plans become inherently conservative, so as to be 
conformant to expected outcomes.  For example, 
activities are assumed to take the longest they can 
possibly take. 

• The on-board health monitoring system is limited to 
general responses to failures, which often leads to 
unnecessary execution aborts and spacecraft 
operations halts.   For example, a certain failure might 
lead to abandoning the whole plan, whereas portions 
of the plan could still be safely continued. 

 
Virtual Machine Language (VML) [14] is a sequencing 
language that has flown on numerous NASA spacecraft. 
VML is currently in use on the Spitzer space telescope, 
Mars Odyssey, Mars Reconnaissance Orbiter, Dawn, 
Genesis, and Stardust. It is slated for future New Frontier 
and Discovery class missions, including the Mars Telecom 
Orbiter and possibly the Mars Science Lander.  
 
VML is an execution language that was developed to take 
into account the needs of spacecraft operations. It provides 
a "safe-sandbox", with the aim of shielding operations 
personnel from most of the mistakes possible in 
contemporary programming languages like C. Sequences 
are procedural, and have symbolic names. At any time only 
one instruction is active in a sequence engine (also known 
as a virtual machine). The language accommodates a 
variety of spacecraft commanding architectures. It features 
absolute and relative constraints, event-driven sequencing, 
programmable delays, arithmetic and bit-level operations, 
parameters with polymorphism, and a number of numeric 
and string data types. VML dynamically builds spacecraft 
commands with values derived from variables, and has 
reusable blocks that can be called or spawned from 
sequences. The on-board sequencing component can also 
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be configured to access telemetry values for use within 
sequences. 
 
The VML language is compiled to an uplinkable file form 
in a Unix-based ground system by the VML Compiler. This 
process translates human-readable text into a binary file for 
interpretation onboard by the VML Flight Component. The 
flight component is implemented in C for compatibility 
with the widest possible range of missions. In addition, a 
Unix tool known as Offline VM (OLVM) is available for 
ground-based execution and debugging of developed blocks 
and sequences. OLVM encapsulates the actual flight code 
for high fidelity testing with very fast turnaround when 
developing using VML. 
 

 

Execution Systems 

This section presents several NASA-relevant execution 
systems, in alphabetical order. 

Apex 
Apex [10] is an execution system and has been used in 
numerous large-scale applications including control of real 
autonomous helicopters, control of simulated aircraft for 
wildfire detection, and in simulating humans for Human 
Computer Interface (HCI) analysis.  
 
Apex is a reactive execution system that selects for 
execution one or more procedures (partial plans) from its 
library of procedures at each execution step. In most 
applications Apex has been used as an execution-only 
system. Apex is designed to unify plan-running and 
mission-management functionality.  Planners may be called 
on to produce or extend a mission plan, to solve a local 
planning problem within a mission plan or both. Apex may 
therefore potentially be used as an execution system 
coupled with an external planner. 
 
The execution language used by Apex is the Procedure 
Description Language (PDL). PDL can represent a 
hierarchical decomposition of a high-level task into basic 
primitives, event driven floating contingencies, and also 
calls to Lisp (the underlying programming language). A 
PDL procedure consists of a unique identifier, a description 
of a class of goals the procedure applies to, and one or 
more step clauses. The step clauses are concurrently 
executable and may call other procedures (sub-tasks).  
 
The input to Apex is a set of human-fabricated procedures 
represented in PDL. Apex is a reactive system that chooses 
an action at every execution step. Key capabilities of the 
executive (and of PDL) are: 

• Monitoring/querying for complex temporal events 
patterns 

• Opportunistic (reactive) task refinement and resource 
allocation 

• Management of concurrent and periodic tasks 
 
Continuous reaction allows Apex to use the most recent 
measurements to guide the selection of the next action. In 
addition it allows dynamic update of high level goals. Apex 
also provides a number of tools for debugging, 
demonstration, and monitoring.  

CRL and C-CRL Executive 
The Contingent Rover Language (CRL) [4] is a declarative 
plan execution language that was designed to represent 
contingent plans. It uses a hierarchical representation and 
can represent simple and floating branches, nesting, 
flexible time, and state and resource conditions. The CRL 
executive has been used on NASA’s Marsokhod, ATRV, 
and K9 rovers as a high-level plan interpreter. It has also 
been used with the Mission Simulation Facility (MSF) 
rover simulator. C-CRL is an extension of CRL that is 
capable of concurrent execution and has been used for the 
single-cycle instrument placement demonstration on the K9 
rover [21]. 
 
The CRL executive may be used as an execution-only 
system with manually written CRL constructs. The external 
planner that generates CRL plans is the PICO contingent 
planner [5]. CRL does not support loops and periodic tasks, 
or have a mechanism for providing feedback to planners. 
 

IDEA  
Intelligent Distributed Execution Architecture (IDEA) [20] 
is a model-based planning and execution system. One of 
the two glitches experienced by Remote Agent was due to 
undocumented and subtle differences in semantics between 
models in the planning, execution and diagnosis layers. 
IDEA was developed to address this problem by building 
an architecture that supports controllers/planners at 
multiple levels of abstraction. Controllers (agents) at every 
level of abstraction share the same model. The semantics of 
the structure of a task, the structure of an execution cycle 
responsible to activate a task in response to an 
asynchronous or synchronous event, the structure of events 
communicated between controllers, how the 
communication of tasks maps into the transport layers 
responsible of delivering them across agents, are thus 
uniform. Each controller (control agent) at every level of 
abstraction is assumed to perform planning as the sole 
computational process to decide how to respond to events.  
 
IDEA uses the classic sense-plan-act cycle. One of the 
novel features in IDEA is the use of an on-board planner 
from first principles (i.e., the sub-goaling model) to plan 
for a limited horizon into the future and execute the current 
task at hand simultaneously. The advantage is that this 
allows it to dynamically update the plan based on the 
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current state of the world and previous actions, which can 
yield a wider range of robust behaviors than possible with 
traditional execution scripts. The disadvantage of using 
planning from first principle at every execution cycle is that 
patterns of constraints (temporal and parametric) are 
always assembled from scratch, causing higher latency than 
possible when using pre-compiled execution scripts. 
Consequently, execution may halt if the planner can’t 
deliver a response in time. IDEA agents can also use an 
arbitrary number of deliberative planners to optimize agent 
behavior over a long, future horizon. IDEA is thus an 
execution system with internal planner (reactive planners) 
and may also be used as an execution system coupled with 
an external planner (deliberative planners) at the same 
time. 
 
XIDDL is the execution language used in IDEA. It is a 
modeling language amenable to temporal/hybrid planning 
through subgoaling, used to describe the model of the 
world, the internal logic and the input/output behavior of 
each IDEA controller. This uniformity aims to facilitate 
system-level validation for an autonomy system without the 
need for understanding the details of each specific 
controller, since it is expensive and error prone to assume 
that mission personnel will examine software written in 
different computer languages in order to ascertain its ability 
to satisfy mission requirements. IDEA has been used for 
autonomously controlling a telescope, PSA (personal 
satellite assistant), and a number of mobile robots. 
 
While IDEA is designed to use any planner that uses a 
representation that is compatible with the XIDDL modeling 
language, all of the IDEA systems developed so far use the 
Europa planning technology [9] both for reactive and 
deliberative planning. 
 

MPE 
Mission Planning and Execution (MPE) [1] is the execution 
subsystem of the Mission Data System (MDS) [24]. MDS 
uses an explicit state-based representation. Knowledge 
about the spacecraft and the environment is provided by 
state estimates. Knowledge about the behavior of the 
system is stored in state models. Information is reported via 
a history of states, measurements, and control commands. 
The input to MPE is operator “intent” (expressed as 
temporal constraints, and constraints on states), flight rules, 
and hard constraints on variables. MPE is an execution 
system with internal planner that can locally adapt the 
original plan to recover from faults and handle uncertainty.  
 

PROPEL 
Program Planning and Execution Language (PROPEL) 
[17] [18], is a unified planning and execution system that 
uses a procedural representation. This is different from 

IDEA, which exclusively uses a declarative action 
representation.  
 
The motivation was that since most software is not written 
as a declarative model it tends to be outside the scope of a 
planner’s reasoning.  PROPEL was designed to increase the 
scope of the planner’s model to include software in order to 
address the problem of software failure detection and 
recovery.  
 
Propel was designed to close the gap between the 
declarative action model used by a planner and the 
procedural languages used to develop real-world software. 
The representation is intended to be expressive enough to 
be used in system software including the planner and 
executive software. Motivation for using a procedural 
representation includes:  
 

• Desire to include all software within the planner’s 
model in order to increase the scope of failure 
recovery to include infrastructure software failures.   

• Desire to represent complex procedures including 
loops, conditionals, local variables, and 
multiprocessing. 

• Desire to reduce the need to develop and maintain 
different models for the planner and execution 
system. 

• Reduce risk of loss of information in translation 
between execution and planning (and vice versa).  

 
Propel is both an architecture and a language. The 
architecture provides integrated planning and execution 
modules that monitor and manipulate application-level 
processes written in the Propel language.  The language is a 
library of methods for embedding search and temporal 
constraint information into C++, thus creating a "superset" 
of C++ like TDL.  This library provides an interface from 
the Propel application code to the supervisory meta-
processes (the planning and execution modules), which 
monitor the application to provide failure detection and 
recovery. 
 
The language provides an action representation that 
captures control constructs and can also be projected by a 
search-based planner. The planner can provide a useful 
partial plan even when it is interrupted after an arbitrary 
amount of computation. The planner and the controller 
share identical data structures and algorithms for 
interpreting a shared representation of control actions. 
PROPEL is an execution system with internal planner. 
 

PRS 
The Procedural Reasoning System (PRS) [12] was 
developed to address the problem encountered in 
developing autonomous systems that were required to be 
continuously active and have real-time response. 
Traditional programming languages imposed an order on 
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task execution through the language’s control structure that 
makes it difficult to respond quickly to a large set of 
possible events. 
 
PRS is a reactive goal-driven system that selects 
procedures  (partial plans) from its library of procedures at 
each execution step. PRS is an execution-only system. 
 
PRS has a knowledge-base of procedures. Each procedure 
requires the specification of an event, the state of the world 
that will trigger that event, the steps that are executed by 
the procedure, and the sub-goals that it achieves.  
 
PRS has been used on a number of mobile robots and also 
in a simulation of the space shuttle. PRS was originally 
written in Lisp and is now known as PRS-CL. The C 
version of it is called C-PRS or Propice [15]. 

RAP System 
Reactive Action Package System (RAPs) [8] was designed 
to support reactive planning and execution. It is a 
representation language for general-purpose execution. It 
uses a Lisp-based interpreter to manage a task network and 
to interface to a behavioral layer. RAPs may thus be used 
as an execution-only system or execution system coupled 
with an  external planner. 
 
The main idea behind RAPs is that all capabilities of goal-
achieving behaviors – task decomposition, different tactics 
for achieving a goal, monitoring, error recovery, checking 
of pre- and post-conditions – should be represented in a 
single “package.”  Each RAPs is thus a self-contained 
module that knows how to achieve a particular goal in the 
face of uncertainty.   
 
The RAPs execution system uses a library of goal-
achieving behaviors and a symbolic world database to 
choose which RAPs to execute, how to decompose them, 
and when they succeed or fail.  The execution system 
schedules RAPs according to their priority and temporal 
constraints, interrupting execution of one RAP if higher 
priority RAPs become active. 
 

Remote Agent (RA) Executive 
Remote Agent [22] is an AI system that flew on-board the 
Deep Space One (DS-1) spacecraft in 1999. The main 
characteristics of the Remote Agent are that it is model-
based with on-board planning, fault detection, 
identification, and recovery.  
 
The executive in the Remote agent [23] is the central 
controller. The input to the Remote Agent executive is a 
high-level state and duration for which the state must be 
maintained. The executive autonomously calls the planner 
to generate a plan to satisfy a high-level goal. It uses a 
domain model to monitor plan execution and commands 

the planner to generate an updated plan if any of the 
constraints are violated during execution. 
 
The Remote Agent executive was based on the Execution 
Support Language (ESL) [11].  ESL is a declarative 
execution language that is an extension of Lisp. It is 
implemented as a set of macros that expand into Common 
Lisp and invoke Lisp’s multi-tasking library. ESL provides 
task-level control constructs, resource management, and a 
database built on Prolog 
 
The novel features demonstrated by the RA executive in 
the DS-I experiment were integrated planning and 
execution with low-latency response time to contingencies 
and deficiencies in the plan and the lack of intervention 
required by the human operator after issuing high level 
mission goals. The RA executive is an execution system 
with internal planner and also an execution system coupled 
with an external planner at the same time. 
 
One of the main challenges with this approach is building 
and maintaining models. The emergent behavior that results 
from subtle interactions between qualitative models of 
weakly interacting subsystems is hard to predict since the 
range of input conditions and responses are extremely 
large. “Incorrect knowledge in the domain model could 
endanger or even lose the mission” [2].  
 

RMPL, Titan, Kirk, Moriarty 
Titan [29] is a model-based execution system that supports 
both execution control and model-based goal achievement 
specifications.  The execution control component generates 
goal states, which are then given to the model-based goal 
achievement component.  The goal achievement 
component uses automated diagnosis methods to estimate 
the current state from observable data (mode 
identification), and then uses automated planning (mode 
reconfiguration) to generate command sequences to 
achieve the given goals from the current state.   
 
The execution language used in Titan is the Reactive 
Model-based Programming Language (RMPL) [28].  It is 
used to specify both the control information used by the 
control component and the model-based state estimation 
and planning component.  The control information supports 
control constructs such as loops, conditions, iterations and 
contingencies, over model-based specifications of 
concurrent and sequenced goals. The control elements of 
RMPL are compiled into hybrid control automata (HCA), 
while the mode identification and reconfiguration is 
specified in terms of concurrent control automata (CCA). 
 
Titan differs from Propel because it compiles procedural 
constructs into a declarative model, which is then 
interpreted by during execution. Titan is similar to IDEA 
this way, but differs from IDEA by using an explicit 
description of control behavior. 
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The core Titan system and the RMPL language have been 
extended to handle hybrid (continuous/discrete) state 
information, resulting in a system called Moriarty.  A 
different extension, implemented in the Kirk execution 
system [30], supports distributed cooperative execution.  
Titan, Moriarty and Kirk may be described as execution 
systems with internal planner. 

RPL 
Reactive Plan Language (RPL) [19] was inspired by RAP 
and PRS.  It is a Lisp-like language and includes rich set of 
control constructs, such as conditionals, looping, and the 
ability to specify “policies” that hold during the execution 
of particular sub-tasks.  
 
RPL was designed to support replanning and debugging of 
task definitions [2]. Based on experience obtained during 
execution and Monte-Carlo simulations of task execution, 
situations can be identified where tasks are likely to fail. 
Heuristic “critics” are then used modify the task (e.g., 
adding new constraints, adding new policies) in order to fix 
the bugs found.  RPL is an execution system with internal 
planner. 

TDL 
 
The Task Description Language (TDL) [25] uses a 
procedural representation to support plan execution. It is an 
extension of C++, adding syntax for specifying high-level 
control. A Java-based compiler translates TDL into pure 
C++, together with calls to a domain-independent task 
management library. The resulting code can then be 
compiled with any existing compiler and linked with 
existing C++ code.  There are options in the language to 
specify that the resulting code should be threaded and/or 
distributed (the latter used for coordinating multiple robots. 
 
TDL provides the ability to represent high-level control 
constructs including task decomposition, task coordination 
and synchronization, execution monitoring and exception 
handling, as well as distributed coordination between 
multiple agents.  Being an extension of C++ makes it very 
easy to integrate TDL into projects – developers can use as 
much, or as little, of the TDL functionality as they need to 
augment the standard C++ functionality. 
 
High level control constructs are represented in TDL as 
task-trees. Task trees represent the execution trace of 
hierarchical plans and are created dynamically at run time.  
The task-tree decomposition can be created from 
conditional and recursive task representations. The 
temporal constraints in the task-tree decomposition 
(partially) order task execution. Planning and sensing are 
treated as schedulable activities. In other words, the 
executive runs the main loop and calls the planner when 
required. TDL is an execution system coupled with an  

external planner. In several projects, a symbolic Plan 
Representation Language (PRL) was used to transfer data 
between a planner and a TDL-based executive [13]  To 
date, TDL has been used in about a dozen mobile robot and 
autonomous system projects at various universities and 
institutions, including several NASA rovers [7]. 
 
 

Universal-Executive 
The Universal-Executive is currently under development in 
a collaborative effort of researchers at NASA Ames 
Research Center, NASA’s Jet Propulsion Laboratory and 
Carnegie-Mellon University. It is being designed to 
facilitate reuse and inter-operability of execution and 
planning frameworks. Plan execution systems often have a 
close relation to the planners that they are associated with, 
which makes information sharing between different 
execution and decision-making systems difficult. 
 
The Universal-Executive builds on the Coupled Layer 
Architecture for Robotic Autonomy (CLARAty) [27], 
which is a two layer software architecture that was 
developed to enable both a plug-and-play capability and a 
tighter coupling of high level decision making planners and 
the interface to hardware. The CLARAty architecture has 
successfully enabled interoperability at the Functional 
Layer, which is the interface to the hardware. Current 
work, including the development of the Universal 
Executive, is addressing this same goal at the Decision 
Layer. 
 
The execution language to be used in the Universal-
Executive is called Plan Execution Interchange Language 
(PLEXIL). PLEXIL extends many execution control 
capabilities of other systems. The key characteristics of 
PLEXIL are that it is compact, semantically clear, and 
deterministic given the same sequence of events.  At the 
same time, the language is quite expressive and can 
represent simple branches, floating branches, loops, time 
and event driven activities, concurrent activities, sequences, 
and temporal constraints.  
 
The input to the Universal-Executive will be a PLEXIL 
representation of an execution control instance and a 
description of relevant domain information.  Execution 
nodes describe both initiation of real-world actions, and the 
control of execution.  The nodes are arranged into 
hierarchical trees where leaf nodes are action nodes and 
internal nodes are control nodes.  This is different from 
TDL, where task trees are a type rather than an instance.  
 
The execution of each node is governed by a set of 
conditions, such as when the node gets activated and when 
it is done.  The Universal-Executive will be capable of 
executing multiple nodes concurrently. When action nodes 
are executed, commands are sent to the rover, whereas 
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when internal nodes are executed, they are expanded to the 
next level of nodes in the tree. 
 
The expressiveness of the language enables the Universal 
Executive to handle dynamic outcomes and environmental 
uncertainty.  The executive can also provide execution 
information and outcomes back to higher-level systems.  
Consequently, it can be used both as a stand-alone 
execution-only system, and as an execution system coupled 
with an external planner.  
 

Conclusions 

The demands of future NASA spacecraft and robotic 
missions dictate an execution system that has great 
flexibility, expressiveness, and ease of use.  This paper has 
presented a number of execution systems and execution 
languages that are relevant to NASA-type missions. 
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